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a b s t r a c t

The risk graph is one of the most popular methods used to determine the safety integrity level for safety
instrumented functions. However, conventional risk graph as described in the IEC 61508 standard is sub-
ccepted 18 August 2008
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eywords:
isk graph method
afety integrity level

jective and suffers from an interpretation problem of risk parameters. Thus, it can lead to inconsistent
outcomes that may result in conservative SILs. To overcome this difficulty, a modified risk graph using
fuzzy rule-based system is proposed. This novel version of risk graph uses fuzzy scales to assess risk
parameters and calibration may be made by varying risk parameter values. Furthermore, the outcomes
which are numerical values of risk reduction factor (the inverse of the probability of failure on demand)
can be compared directly with those given by quantitative and semi-quantitative methods such as fault
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uzzy rule-based system tree analysis (FTA), quanti

. Introduction

The purpose of a safety analysis is to ensure that the risks
hat could be a potential source of harm, damage of property
nd degradation of the environment, are sufficiently minimised
y addressing all the relevant safety lifecycle stages including the
esign, implementation, operation and maintenance through to
ecommissioning. Reducing residual risk to an acceptable level is
sually achieved by using a combination of safety protective sys-
ems, including safety instrumented systems, SIS (e.g. Emergency
hutdown Systems and Fire and Gas Systems), other technology
afety-related systems (e.g. relief valves, bursting discs, firewalls
nd drain system) and external risk reduction facilities (e.g. work
rganization, procedures and separation). The SIS often represents
n integral part of a safety management system [1]. It is made up of
ne or more safety instrumented functions (SIF) to sense abnormal
ituations and automatically return the process to a safe state. This
s usually achieved by performing a partial or complete shutdown
f the process, to prevent a hazardous event or mitigate its conse-
uences. If the initial risk without SIS is high, the availability and
ntegrity requirements for SIFs must be high.
Requirements for SIFs are addressed in the international stan-
ard IEC 61508 [2] and the process industry sector-specific version

EC 61511 [3] which are widely accepted as the basis for specifi-
ation, design and operation of SISs. Each SIF is specified in terms

∗ Corresponding author. Tel.: +213 33868977; fax: +213 33868977.
E-mail addresses: r nait said@hotmail.com (R. Nait-Said), fati zidani@lycos.com

F. Zidani), ouzraoui@yahoo.fr (N. Ouzraoui).

i
s
r
o
A
a
t
n
m

304-3894/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2008.08.086
risk assessment (QRA) and layers of protection analysis (LOPA).
© 2008 Elsevier B.V. All rights reserved.

f the action to be achieved and the required probability of failure
n demand (PFD). The latter defines the required safety integrity
evel (SIL) for the SIF. The IEC standards provide a framework for
stablishing SILs although they do not specify the SILs required for
pecific applications. They propose various methods for determin-
ng the PFD or the amount of risk reduction needed.

The risk graph described in Part 5 of the IEC 61508 is one of
he most popular methods that enables the SIL of a SIF to be deter-

ined from a knowledge on the risk factors related to the process.
n particular, it has been extensively applied when determining SIL
equirements for local safety functions such as process shutdown
ystems [4,5]. The principles of the risk graph method have been
dopted in the UKOOA guidelines for process control and safety sys-
ems on offshore installations and other documents published by
ffshore operators [6,7].

An important issue faced by risk analysts is how to deal with
ncertainties that arise in each phase of the risk assessment pro-
ess. In particular, one should identify how to deal with the state of
incomplete/no knowledge” related to process safety functions. An
nderlying assumption is that “uncertainty increases risk”, but this

s a conservative approach requiring that, in the absence of mean-
ngful data or the opportunity to assimilate all available data, risk
hould be overestimated rather than underestimated. So, higher
atings are assigned to risk parameters, reflecting the assumption
f unfavorable conditions, in order to compensate the uncertainty.

lthough this approach results in a conservative outcome leading to
design of sufficient safety integrity, it leads also to higher installa-

ion and maintenance costs. Alternatively, more efforts are certainly
eeded to obtain a consistent and less conservative outcome using
ore refined SIL determination methods [4,8,9].

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:r_nait_said@hotmail.com
mailto:fati_zidani@lycos.com
mailto:ouzraoui@yahoo.fr
dx.doi.org/10.1016/j.jhazmat.2008.08.086


6 ardous Materials 164 (2009) 651–658

e
w
p
o
r
m
S
d
t
i
g
o
d

2

f
c
A
a
T
F
a
r
i
m
s
t
t
c
m
r
o

m
[
m

•

•

•

c
d
o
e
i

d
fi

T
D

S

4
3
2
1

b
c
a
(
e

•

•

52 R. Nait-Said et al. / Journal of Haz

Fuzzy rule-based systems and fuzzy arithmetic [10,11] have
merged over the last years as a very appropriate tool in dealing
ith uncertainty in reliability and safety analysis [12–17]. In this
aper, an approach of fuzzy rule-based risk graph is proposed in
rder to add more power features to the conventional calibrated
isk graph method. In this perspective, the safety integrity assess-
ent based on fuzzy logic allows the analyst to evaluate the SIL of

IFs in a natural way by using the notion of a linguistic variable for
epicting information which is qualitative, imprecise and/or uncer-
ain. The methodology we have used is the application of the fuzzy
nference system with fuzzifier and defuzzifier on a calibrated risk
raph. The outcomes of the fuzzy risk graph are numerical values
f risk reduction factor (RRF = 1/PFD) which are computed from a
efuzzification of “fuzzy SILs”.

. Conventional risk graph method

Safety-related systems are conceived to implement the safety
unctions necessary to achieve or maintain a safe state for the pro-
ess in terms of specified risk reduction related to hazardous events.
safety function is thus expressed in terms of the action to be taken

nd the required probability to satisfactorily perform this action.
his probability as a quantitative target defines the safety integrity.
our discrete safety integrity levels, namely SIL1, SIL2, SIL3 and SIL4,
re defined in the IEC 61508 and quantitative targets to which they
elate are based on whether the safety-related system is operating
n low demand mode (e.g. shutdown system) or continuously (e.g.

otor care brakes). In the first case, the appropriate measure of
afety function performance is the PFD, or its inverse, risk reduc-
ion factor (RRF). For functions which operate continuously, it is
he probability of a dangerous failure per hour which is of con-
ern. Table 1 shows the definition of the four SILs for low demand
ode. As shown, the higher the SIL, the more available the safety-

elated system, so the more stringent becomes the implementation
f safety function.

For determining the SIL, IEC standards have provided various
ethods that have been applied with differing degrees of success

4]. These methods range from using pure quantitative risk assess-
ents (QRAs) to more qualitative methods, as follows:

Quantitative methods such as fault tree analysis (FTA) and Markov
graphs.
Semi-qualitative methods such as safety layer matrix, calibrated
risk graph, and layers of protection analysis (LOPA).
Qualitative methods like risk graph and hazardous event severity
matrix.

Qualitative and semi-qualitative methods are generally less
ostly than the quantitative ones. They are technologically less
emanding to develop, relatively intuitive to plant operators with-
ut requiring detailed risk assessment training, and do not make

xtensive use of historical failure-related data as a base of estimat-
ng failure probabilities.

The risk graph as a qualitative method can be described as a
ecision tree in which four risk parameters, considered to be suf-
ciently generic to deal with a wide range of applications, must

able 1
efinition of SILs for low demand mode from IEC 61508-1

IL Range of average PFD Range of RRF

[10−5, 10−4] [10−4, 10−5]
[10−4, 10−3] [10−3, 10−4]
[10−3, 10−2] [10−2, 10−3]
[10−2, 10−1] [10, 102]

3
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Fig. 1. Example of risk graph from IEC 61508-5.

e combined to arrive at the required SIL. These parameters are:
onsequence (Ci), frequency and exposure time (Fj), possibility of
voiding hazard (Pk), and probability of the unwanted occurrence
Wl). Fig. 1 gives an example of a risk graph implementation [2]. An
xplanation of this risk graph is the following:

Use of the risk parameters C, F, and P leads to one of six outputs
X1, X2, . . ., X6. Each one of these outputs is mapped onto one of
three scales (W1, W2 and W3). Each point on these scales gives
an indication of the necessary safety integrity that has to be met
by the E/E/PE safety-related system. The numbers 1, 2, 3 and 4
represent the four SILs. The point ‘a’ indicates the case of a sys-
tem without special safety requirements, which corresponds to
a probability of failure less than is indicated for SIL1. The point
‘b’ refers to situations when for specific consequences, a single
safety-related system is not sufficient to give the necessary risk
reduction.
The mapping onto W1, W2 or W3 allows the contribution of
other risk reduction measures to be made. Scale W3 provides
the minimum risk reduction contributed by other measures (i.e.
the highest probability of the unwanted occurrence), scale W2 a
medium contribution and scale W1 the maximum contribution.
Thus, the output of the risk graph as a measure of the required
risk reduction for the E/E/PE safety-related system, together with
the risk reductions achieved by other technology safety-related
systems and external risk reduction facilities which are taken into
account by the Wl scales, gives the overall risk reduction for the
specific situation.

. Shortcomings and alternatives

Although the risk graph method is relatively easy to be imple-
ented and allows a fast assessment of SILs, it is less precise.

ndeed, the interpretation of linguistic terms such as ‘rare’, ‘pos-
ible’, ‘death of several persons’, etc. can differ between evaluators
ince they could be the result of a subjective decision or from one
ndustry sector to another [4,6,18].
There is therefore the need to calibrate the graph and to give
uidance on the meanings of linguistic terms using orders of mag-
itude via numerical scales so that the resulting SIL rating will bring
own the residual risk to the acceptable level. Otherwise, the risk
eduction will be principally subjective with substantial limitations
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Fig. 2. Risk graph with qualitative description of parameters.

or safety-related decision making [19]. In this sense, the IEC 61511-
art 3 provides a semi-qualitative method which is the calibrated
isk graph. Although not specifically and absolutely fixed by the
tandard, the risk graph is usually calibrated such that each deci-
ion differs from another by a factor of ten (10−1, 10−2, . . .). Fig. 2 and
able 2 respectively show an example of a risk graph as used in the
KOOA guidelines and quantitative definitions of risk parameters

6,7,20].
Against a tolerable target risk, managing the inherent uncer-

ainty in the range of the risk parameters of a risk graph is
roblematic [7,20,21]. Although crisp intervals as means of charac-
erizing uncertainty are an acceptable part of the usual calibrated
isk graphs, the sufficient robustness in the SIL value may not be

eached against the ambiguity of the information upon which the
ssessors base their judgment.

This type of knowledge elicitation presents two major disad-
antages: first, it is in discordance with the gradual transition

able 2
xample of qualitative and quantitative definitions of parameters

isk parameter Qualitative descriptions Quantitative descriptions

onsequence (C)

Minor injury No deaths per event
Marginal: one death or
permanent injury

[10−2, 10−1] probable
deaths per event

Critical: several deaths [10−1, 1] probable deaths
per event

Catastrophic: many deaths >1 probable deaths per
event

xposure (F)
Rare <10% of time
Frequent ≥10% of time

voidance (P)
Possible 90% probability of avoiding

hazard
Not likely ≤90% probability of

avoiding hazard

emand rate (W)
Very low <1 in 30 years ≈ <0.03 per

year
Low 1 in [3, 30] years ≈ [0.03,

0.3] per year
Relatively high 1 in [0.3, 3] years ≈ [0.3, 3]

per year
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rom one interval to another, well known in real-world applica-
ions. Indeed, a measurement that falls into a close neighbourhood
f each precisely defined border between two adjacent intervals
s taken as evidential support for only one of them, in spite of
he inevitable uncertainty involved in the computing of the SIL,
.e. the safety integrity will be more or less one with of course
ifferent requirements. Second, it fails to reflect the fact that in
ost human reasoning and concept formation the decomposition

f whole into parts is fuzzy rather than crisp [22–24]. In fact,
here is an incompatibility between the uncertainty characteriz-
ng human perception and the crispness of the response mode.
hus, we need a representation of numbers, which is tolerant of
mprecision and partial truths. Linguistic terms defined on numer-
cal universes and supported by fuzzy sets, provide a rather natural
ool for numeric/symbolic interfaces and would be a very adequate
lternative when available information is imprecise and/or uncer-
ain.

Furthermore, compared to C and W parameters F and P have
nly two ranges each and so the calibration will be dominated by
he two first. As an alternative solution, Blackmore [21] developed
or an offshore project an alternative graph format by introduc-
ng four categories for F against reducing those of C to two only
injury or death). As reported, the proposed approach has resulted
n improved effectiveness in the SIL determination. For a best cal-
bration, Dean [7] suggested also the introduction of additional
onsequence and frequency bands in some cases. Recently, Baybutt
8] has developed an improved risk graph with the following four
arameters: initiating cause frequency, enabling events/conditions,
afeguards failure probability and consequences of the hazardous
vent. He introduces more than two levels for the first and the
wo last parameters to overcome both conservative and optimistic
hoices that respectively may result in an overestimation and
nderestimation of the SIL.

Another alternative proposed by Ormos and Ajtonyi [25] con-
erns the use of a fuzzy rule-based system in determining the
IL value by applying hazardous event severity matrix and con-
itional catastrophe theory. By application to three subsystems
f steam production, the results of this approach compared with
hose provided by the quantitative method (as described by the IEC
1508) are very encouraging. For two subsystems the same result is
btained, SIL3 and SIL2 and for the third the result is SIL1 by fuzzy
pproach against SIL2 by the quantitative method. This difference
s interpreted by the fact that severity parameter qualitatively esti-

ated as low is not taken into consideration by the quantitative
ethod. In the same way, Simon et al. [26] propose a fuzzy rule-

ased approach of the risk graph as well as a subjective evaluation
f risk parameters by aggregation of expert judgments. Allocation
f required SIL is determined by considering the risk graph as a
uzzy decision tree. Both risk parameters and SIL are represented by
uzzy partitions with linguistic descriptors, defined on ordinal mea-
urement scales. The proposed approach is applied to equipment
ssued from the literature: a vessel containing a volatile flammable
iquid. A SIF is considered to protect against a gas release greater
han the admissible rate which is 10−4 per year. Each risk parame-
er is assessed by aggregating expert judgments given as possibility
istributions, and fuzzy inference system provides after difuzzifi-
ation the SIL value which is SIL2. Referring to these works, we
ttempt in this paper to develop a more flexible calibrated risk
raph using fuzzy logic system, with two main differences com-
ared to the above approaches: first, calibration problem is taken
nto consideration and so, scales supporting fuzzy partitions of the
IL and parameters C, F, P, and W are numeric rather ordinal with
he orders of magnitude given by Tables 1 and 2. Second, fuzzy
ntervals defined on the RRF universe particularly allow a SIL value
o be between two successive classes with differing membership
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output variable. The parameters C, F, P, and W allow a meaning-
ful graduation of the risks to be made, and contain the key risk
54 R. Nait-Said et al. / Journal of Haz

egrees. In practice, when the availability data for a SIF indicates a
equirement “just between” two SIL classes, generally the stricter
IL requirement is chosen [5]. This conservative solution involves
more substantial increment of effort and competence with the
ajor difference occurring when moving from SIL2 to SIL3 [6]. The

uzzy integrity levels may be an alternative to resolve this kind
f problems. For example, a value of RRF (1/PFD) as an outcome
f the fuzzy risk graph model may belong simultaneously to two
uzzy sets “SIL2” and “SIL3” but with a little higher membership
egree to the latter (equal to 0.7 for example). It would be reason-
ble to say that we are in presence of “rather SIL3” requirements
hich clearly involve less cost and time than “conventional SIL3”,

ccording to the proportion given by the membership degree. For
xample, 70% of the cost and time devoted to the “conventional
IL3”.

. Fuzzy inference system methodology

Fuzzy logic-based method is a powerful tool for modeling the
ehavior of systems which are too complex or too ill-defined to
dmit of conventional quantitative techniques or when the avail-
ble information from the systems is qualitative, imprecise and/or
ncertain. In contrast to classical logical systems, fuzzy logic aims at
odeling the imprecise modes of reasoning that play an essential

ole in the human ability to give judgments or to make decisions
n an environment of uncertainty and imprecision. Thus, unlike
uantitative approaches that require accurate equations to model
eal-world behaviors, fuzzy logic can accommodate the ambigui-
ies of real-world human with the concept of fuzzy sets and fuzzy
nference techniques and consequently, possess a natural capability
o express and deal with judgment and measurement uncertain-
ies.

Fuzzy inference systems have found numerous applications in
elds such as automatic control, data classification, decision anal-
sis, expert systems, reliability engineering, and system safety.
mong these systems, the fuzzy logic controller proposed by Mam-
ani and Assilian [27] is the most encountered in fuzzy rule-based
roblems. It was the first implementation dedicated to the control
f a steam engine by synthesizing a set of fuzzy rules provided by
xperienced human operators. Based on a simple technique using
he max–min inference, Mamdani’s method has been successfully
pplied in many fields ranging from processes control to medical
iagnosis. Specific details for each step of this method are explained
riefly below [28].

Let us consider a rule base constituted of n fuzzy IF-THEN rules
ith multiple inputs and single output (MISO). Each rule Ri (i = 1,

. ., n) is therefore of the form:

i : IF X1 is Ai1 and . . . and Xm is Aim THEN Y is Bi (1)

here the, Xj’s, j = 1, . . ., m, and Y are linguistic variables defined on
he universes U = U1 × · · · × Um and V, respectively. The fuzzy sets Aij
re elements of a linguistic partition Tj of Uj (universe of variable
j). For a crisp input vector u0 = (u0

1, . . . , u0
m), the output value is

etermined by the following three-step method.

.1. Fuzzification
It is the process of converting an input data u0
j

into its symbolic
epresentation, i.e. a fuzzy set A∗

ij
, using the fuzzy partition Tj of

j, by computing the membership degree �Aij
(u0

j
) of u0

j
to each Aij.

hen, a matching degree ˛i = minj�Aij
(u0

j
) is computed for each

ule Ri.

a
c
v
i
t
v
a
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.2. Fuzzy inference

The process for obtaining the fuzzy output using the max–min
nference method consists of the following sub-steps:

Finding the firing level of each rule: The truth value for the
premise of each rule Ri is computed and applied to the conclusion
part of this rule. It is computed as follows:

˛i = minj�Aij
(u0

j ) (2)

If a rule’s premise has non-zero degree of truth, i.e. when the
input matches partially the premise of the rule, then the rule is
fired.
Inferencing: In the inference step, the output B′

i
of each rule Ri

is computed using a conjunction operator, the min. Then, B′
i
=

˛i ∧ Bi is given by:

�B′
i
(v) = min(˛i, �Bi

(v)) (3)

Aggregation: For obtaining the overall system output, all the indi-
vidual rule outputs are combined using the union operator. Then,
B′ = ⋃

iB
′
i
=

⋃
i˛i ∧ Bi with as membership function:

�B′ (v) = maxi=1,...,n �B′
i
(v) (4)

.3. Defuzzification

It produces a representative value v0 of Y in B′. Among defuzzi-
cation methods, the center of gravity is the most commonly used,
nd it is given by:

0 =
∫

v ∈ V
�B′ (v)v dv∫

v ∈ V
�B′ (v) dv

(5)

. Fuzzy safety integrity assessment

The overall procedure for making a fuzzy safety integrity assess-
ent is shown in Fig. 3. The analysis uses fuzzy partitions to

escribe both risk parameters and SILs. The membership functions
re determined by a fuzzification, i.e. a fuzzy information granu-
ation according to Zadeh [24], of data of a typical calibrated risk
raph. Thus, crisp intervals are replaced by fuzzy intervals with
rapezoidal membership functions. The basic idea of this transfor-

ation is to consider the boundaries of an ordinary interval as a
ean value of a fuzzy number under the form of upper and lower

xpectations [29]. Details concerning the different steps of the pro-
osed fuzzy model are presented below.

.1. Selection of input variables

Referring to the IEC standards, the fuzzy rule-based system
ssociated with conventional risk graph considers the four risk
arameters C, F, P, and W as input variables and the SIL as the unique
ssessment factors. Obviously, other factors or conditions could be
onsidered but with reduced number because two major disad-
antages may emerge: first, the higher the number of parameters
s, the more additional SILs should be necessarily added but cer-
ainly without corresponding requirements. Second, further input
ariables do not allow the fuzzy system to be at a reasonable size
nd may complicate the test of the model.
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fuzzy safety integrity assessment.
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m, q− and q+, one uses either arithmetic mean or geometric mean
according to whether or not the universe scale is linear. Fig. 5 illus-
trates the transformation of an ordinary interval into a fuzzy one
Fig. 3. Overall procedure of

.2. Development of the fuzzy scales

Fuzzy logic uses the concept of linguistic variable to describe
he premise and conclusion of a fuzzy rule [11]. This concept pro-
ides a tool of approximate characterization of situations which are
oo complex or too ill-defined for the application of conventional
uantitative techniques. A linguistic variable differs from a numeri-
al variable in that its values are not numbers but words in a natural
anguage. The fuzzy sets, with their boundaries not sharply defined,
lay the role of values of the linguistic variable and may be viewed
s summaries of various subclasses of elements in a universe of dis-
ourse. In the present step, the fuzzy sets for the description of the
arameters C, F, P, and W and the SIL are derived from corresponding
risp partitions, referring to an experienced model, the calibrated
isk graph presented in Fig. 2. Transforming an ordinary interval
o a fuzzy interval may be considered as the converse problem of
etermining the mean value of a fuzzy interval. However, consis-
ently with the well-known definition of expectation in probability
heory, Dubois and Prade [29] have suggested a relevant definition
f the mean value of a fuzzy interval as follows: “the mean value of
fuzzy interval Q is a closed interval bounded by the expectations

alculated from its upper and lower distribution functions”, i.e.:

(Q ) = [E∗(Q ), E∗(Q )] (6)

here

∗(Q ) = inf E(Q ) =
∫ +∞

−∞
u dF∗(u) (7)

∗(Q ) = sup E(Q ) =
∫ +∞

−∞
u dF∗(u) (8)

* and F* are the lower and upper distribution functions of P, respec-
ively, and P belongs to the set of probability measures, P(Q), which
s defined on the support of Q. Let Q be a fuzzy interval with a trape-
oidal membership function �Q, and let S(Q) = [s−, s+] and C(Q) = [q−,
+] be the support and core of Q respectively, i.e. �S(Q)(�) > 0 and
C(Q)(u) = 1. Let ˛ and ˇ be called the left and right spreads, respec-

ively. Under the condition lim
x→−∞

ukF(u) = lim
x→+∞

uk(1 − F(u)) = 0 for

≥ 1, it follows that

∗(Q ) =
∫ +∞

0

(1 − F∗(u)) du −
∫ 0

−∞
F∗(u) du

= q− −
∫ q−

−∞
�Q (u) du (9)

∗(Q ) =
∫ +∞

(1 − F∗(u)) du −
∫ 0

F∗(u) du

0 −∞

= q+ +
∫ +∞

q+
�Q (u) du (10)
Fig. 4. Upper and lower mean values of Q.

y integration (see Fig. 4):

∗(Q ) = q− − ˛

2
(11)

nd

∗(Q ) = q+ + ˇ

2
(12)

hese results are in concordance with the fact that the width of
he mean value is a linear function of the spreads ˛ and ˇ [29]. In
ur case, given E* and q− (respectively E* and q+) of an unknown
uzzy interval Q, ˛ (respectively ˇ) will be determined using Eq.
11) (respectively Eq. (12)). E* and E* as mean values are given by
he boundaries of crisp intervals. The calculation of ˛ and ˇ is as fol-
ows: first, one computes the mean value, m, of the interval [E*, E*].
ext, the core boundaries, q− and q+, are computed using the mean
alue of the subdivisions [E*, m] and [m, E*], respectively. Both for
Fig. 5. Transformation of a crisp interval into a fuzzy one.
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Table 3
Transformation of crisp intervals into fuzzy intervals

E* E* M q− q+ ˛ ˇ s− s∗
− s+ s∗

+

Consequence
Minor 1.0E−09 1.0E−07 1.0E−08 3.162E−09 3.162E−08 4.325E−09 1.368E−07 −1.162E−09 1.0E−09 1.684E−07 –
Marginal 0.01 0.1 3.162E−02 1.778E−02 5.623E−02 1.557E−02 8.753E−02 2.217E−03 – 1.438E−01 –
Critical 0.1 1 3.162E−01 1.778E−01 5.623E−01 1.557E−01 8.753E−01 2.217E−02 – 1.438E+00 –
Catastrophic 1 10 3.162E+00 1.778E+00 5.623E+00 1.557E+00 8.753E+00 2.217E−01 – 1.438E+01 10

Exposure
Rare 0 10 5.0E+00 2.50E+00 7.50E+00 5.0E+00 5.0E+00 −2.50E+00 0 1.250E+01 –
Frequent 10 100 5.50E+01 3.250E+01 7.750E+01 4.50E+01 4.50E+01 −1.250E+01 7.50E+00 1.225E+02 100

Avoidance
Not likely 0 90 4.50E+01 2.250E+01 6.750E+01 4.50E+01 4.50E+01 −2.250E+01 0 1.125E+02 9.250E+01
Possible 90 100 9.50E+01 9.250E+01 9.750E+01 5.0E+00 5.0E+00 8.750E+01 – 1.025E+02 100

Demand rate
Very low 1.0E−05 0.03 5.477E−04 7.401E−05 4.054E−03 1.280E−04 5.189E−02 −5.401E−05 1.0E−05 5.595E−02 –
Low 0.03 0.3 9.487E−02 5.335E−02 1.687E−01 4.670E−02 2.626E−01 6.652E−03 – 4.313E−01 –
Relatively high 0.3 1 5.477E−01 4.054E−01 7.401E−01 2.107E−01 5.198E−01 1.946E−01 – 1.260E+00 1

SIL (RRF = 1/PFD)
NSSR (a) 1 10 3.162E+00 1.778E+00 5.623E+00 1.557E+00 8.753E+00 2.217E−01 1 1.438E+01 –
SIL1 10 100 3.162E+01 1.778E+01 5.623E+01 1.557E+01 8.753E+01 2.217E+00 – 1.438E+02 –
SIL2 1.0E+02 1.0E+03 3.162E+02 1.778E+02 5.623E+02 1.557E+02 8.753E+02 2.217E+01 – 1.438E+03 –
SIL3 1.0E+03 1.0E+04 3.162E+03 1.778E+03 5.623E+03 1.557E+03 8.753E+03 2.217E+02 – 1.438E+04 –
SIL4 1.0E+04 1.0E+05 3.162E+04 1.778E+04 5.623E+04 1.557E+04 8.753E+04 2.217E+03 – 1.438E+05 –
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NR 1.0E+05 1.0E+06 3.162E+05 1.778E+05 5.623E+0

ote: s∗
− and s∗

+ are modified values of s− and s+, respectively.

n a linear scale. For instance, ˛ and s− are determined as follows:

˛ = 2(q− − E∗)

= 2
(

E∗ + m

2
− E∗

)

= E∗ − E∗
2

s− = q− − ˛

(13)

xtreme fuzzy sets within a linguistic partition are derived from
he transformation by assuming infinitespreads, i.e. taking ˛ = −∞,
or �Qel

(u) = 1 for u ≤ q− and ˇ = +∞, and ˇ = +∞, �Qer (u) = 1
or u ≥ q+ (‘el’ is for extreme left and ‘er’ for extreme right). Fur-
hermore, transforming an irregular crisp partition into a fuzzy
artition may involve linguistic labels with meaningless values
incompatibility problem). In this case, the slope of the increas-
ng or decreasing part of these fuzzy sets needs to be reasonably

odified. Table 3 shows numerical results of the different trans-
ormations based on data of Tables 1 and 2. The fuzzy partitions of
isk parameters and SILs, which are derived from the fuzzy intervals
= [q−, [s−, s+], q+], are given by Figs. 6a–d and 7. A more detailed
escription of these partitions is presented in the following:

Consequence: Four fuzzy sets, namely ‘Minor’, ‘Moderate’, ‘Crit-
ical’, and ‘Catastrophic’ were defined on the input space of this
variable (Fig. 6a). The values varying from 10−9 to 10 are rep-
resented on a logarithmic scale. To the linguistic value ‘Minor’
defined in risk graph as ‘no deaths’ is assigned the crisp inter-
val [10−9, 10−7] which suitably represents an unlikely event. This
interval is transformed into a fuzzy one with the omission of the
negative part. The interval [1, 10] is selected to be the mean value
of the fuzzy set ‘Catastrophic’ with the possibility to change its
upper bound according to the hazardous situation. The increas-
ing part of ‘Catastrophic’ is adjusted by taking the upper bound

of the core of the fuzzy set ‘Critical’ as its beginning point. This
adjustment has double purpose: first, it removes the negative
part of the fuzzy interval associated with the term ‘catastrophic’,
which is meaningless from a point of view ‘number of fatalities’.
Second, it avoids the overlapping between more than two fuzzy
.557E+05 8.753E+05 2.217E+04 – 1.438E+06 1.0E+06

sets, which involves many meaningless values for the class ‘catas-
trophic’. For instance, the degree of membership of the zero value
in the non-adjusted fuzzy interval is 0.27.
Frequency and exposure time: Two fuzzy sets, namely ‘Rare’ and
‘Frequent’ were defined on a linear scale ranging from 0% to 100%
(Fig. 6b). The boundaries of their cores are derived from arith-
metic means of crisp interval subdivisions. As in the previous risk
parameter, the negative part of the first set ‘Rare’ is removed, and
the upper bound of its core has served as a lower bound of the
support of the second set ‘Frequent’. The membership function of
the latter is obviously right open.
Possibility of avoiding hazard: As in the previous input parameter,
two fuzzy sets named respectively ‘Not likely’ and ‘Possible’ were
defined on the universe [0, 100] (Fig. 6c). For the first set ‘Not
likely’, the negative part is removed and the upper bound of its
support takes the lower bound value of the core of the set ‘Possi-
ble’. The values of the latter are limited to 100 with a right open
membership function.
Probability of the unwanted occurrence: Three fuzzy sets, namely
‘Very low’, ‘Low’ and ‘Relatively high’ were defined on a proba-
bility space ranging from 10−5 pa to 1 pa (Fig. 6d). As for the first
risk parameter, the probability values are represented on a loga-
rithmic scale. The choice of 10−5 pa (or 1.14 × 10−9 ph) as a lower
bound of the interval [10−5, 0.03], refers to an unlikely event.
Only the first and the last fuzzy set were adjusted by removing
the negative part and the values greater then one, respectively.
The intermediate fuzzy set ‘Low’ is remaining unchanged.
Safety integrity level (SIL): The SIL as a unique output variable is
defined on a RRF scale. The universe of discourse of the latter
consists of the interval [1, 106] with a regular crisp partition, i.e.
there is a factor of 10 between 2 successive subintervals. Seven
fuzzy sets were defined on the output space (Fig. 7): four sets
are associated with the four SILs, with the same labels as lev-

els themselves, namely ‘SIL1’, ‘SIL2’, ‘SIL3’ and ‘SIL4’, and two sets
named ‘NSSR’ and ‘NR’ refer to the cases ‘no special safety require-
ments’ and ‘Single SRS not recommended, respectively. Except the
delimitation of the set ‘NR’, no adjustment is made for all these
labels.
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Fig. 6. Membership functions generated for risk parameters. (a) Consequence, (b)
exposure, (c) avoidance, (d) demand rate.
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Fig. 7. Membership functions generated for SIL.

.3. Derivation of the fuzzy rules

A number of fuzzy IF-THEN rules are extracted following the
isk graph logic and using the linguistic descriptors associated with
isk parameters and SIL. In this case, the rule base can be under-
tood as a translation of the risk graph which is mainly based on
he knowledge and experience of analysts regarding the process
ature and required risk reduction. Both the number of rules and

nput variables involved in premise parts depend on the risk graph
mplementation, i.e. the decomposition level of risk graph. In the
remise and conclusion parts of rules, the linguistic value mean-

ng of input and output variables are described by the fuzzy sets
efined in step 2. The general form of the derived fuzzy rules is:

Ri : IF C is AiC and F is AiF and P is AiP and W is AiW

THEN SIL is Bi (14)

here the risk parameters C, F, P, and W stand for input variables;
ic, AiF, AiP, and AiW are their linguistic values, respectively. The SIL

s an output variable with Bi as its linguistic value. The fuzzy vector
Aic, AiF, AiP, AiW) and the fuzzy set Bi are elements of the universes
RP = UC × UF × UP × UW (RP for risk parameters) and USIL, respec-

ively. According to the risk graph reduction, the premise part of the
bove rule may be reduced to two or three input variables. Refer-
ing to the calibrated risk graph of Fig. 2, two examples of fuzzy
ules are the following:
IF C is Marginal and F is Frequent and P is Possible

and W is Low
THEN SIL is SIL2

IF C is Critical and F is Rare and W is Low
THEN SIL is SIL3

.4. Fuzzy rule base application

As explained in Section 4: fuzzy inference system method-
logy, when the fuzzy inference system is to be applied to a
et of input parameter values the information flows through the
uzzification–inference–defuzzification process in order to gener-
te the output value. Given any combination of input values which

over the specific context of risk parameters, the fuzzy rule-based
isk graph will compute the RRF value that the SIF must achieve
ithin the specific context. The fuzzifier maps crisp input vector

0
RP = (u0

C, u0
F , u0

P, u0
W ) in URP to fuzzy sets in URP, and the defuzzi-

er maps fuzzy sets in USIL. If one or more risk parameters are not
onsidered for a given rule, they will not have any effect on the
atching degree ˛i.
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. Conclusion

Although conventional risk graphs are relatively simple to be
mplemented, they can lead to inconsistent results and possibly
onservatism that may result in SIL overestimation. Indeed, the use
f qualitative definitions for risk parameters is highly subjective and
heir meaning can be misunderstood. On the other hand, numerical
nterpretation of risk parameters and SILs by means of crisp inter-
als violates gradual transition between intervals which is more
ealistic.

The proposed fuzzy risk graph model is a fuzzy rule-based-risk
raph. Its main advantages may include:

It preserves the four parameters used in the standard risk graph
and can be adapted easily to improved risk graphs.
Fuzzy scales with fuzzy linguistic values are used to assess risk
parameters and calibration of the model may be made by varying
risk parameters values.

The outcomes of the model which are numerical values of RRF
1/PFD) can be compared directly with those given by more refined

ethods like FTA, QRA and LOPA.
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